Series: HMJ/5

रोल नं. Roll No. परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ट पर Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर तें कि इस प्रश्न-पत्र में मुद्रित
- पृष्ठ 15 है। (II) प्रश्न-पत्र में दाहिनें हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- (III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 27 प्रश्न
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का (V) समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वीह में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

NOTE

- Please check that this question paper (I) contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (III) Please check that this question paper contains 27 questions.
- (IV) Please write down the Serial Number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

जीव विज्ञान (सैद्धान्तिक) BIOLOGY (Theory)

निर्धारित समय : 3 घंटे Time allowed: 3 hours अधिकतम अंक : 70

Maximum Marks: 70

.57/5/3.

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका अनुपालन कीजिए :

- प्रश्न-एत्र पाँच खण्डों में विभाजित किया गया है क, ख, ग, घ एवं ङ ।
- (ii) प्रश्न-पत्र में 27 प्रश्न है । सभी प्रश्न अनिवार्य हैं ।
- (iii) खण्ड-क में प्रश्न संख्या 1 से 5 तक बहुविकल्पीय प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है।
- (१७) खण्ड-ख में प्रश्न संख्या 6 से 12 तक लघुउत्तरीय प्रकार-1 के प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है।
- (v) खण्ड-ग में प्रश्न संख्या 13 से 21 तक लघुउत्तरीय प्रकार-II के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) खण्ड-घ में प्रश्न संख्या 22 से 24 तक लघुउत्तरीय प्रकार-III के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vii) खण्ड-ङ में प्रश्न संख्या 25 से 27 तक दीर्घ उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) उत्तर संक्षिप्त तथा बिंदुवार होना चाहिए और साथ ही उपरोक्त शब्द सीमा का यथासंभव पालन कीजिए।
- (ix) प्रश्न-पत्र में समग्र विकल्प नहीं है। तथापि, एक-एक अंक वाले दो प्रश्नों में, दो-दो अंकों वाले एक प्रश्न में, तीन-तीन अंकों वाले दो प्रश्नों में तथा पाँच-पाँच अंकों वाले तीनों प्रश्नों में आंतरिक विकल्प दिए गए हैं। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर लिखिए।
- (x) जहाँ आवश्यक हो वहाँ साफ-सुथरा, आनुपातिक तथा समुचित नामांकित चित्र बनाइए।
- (xi) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक अनुभाग और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।

.57/5/3.

eral Instructions:

Read the following instructions very carefully and strictly follow them: Question paper comprises five sections - A, B, C, D and E.

General Instructions:

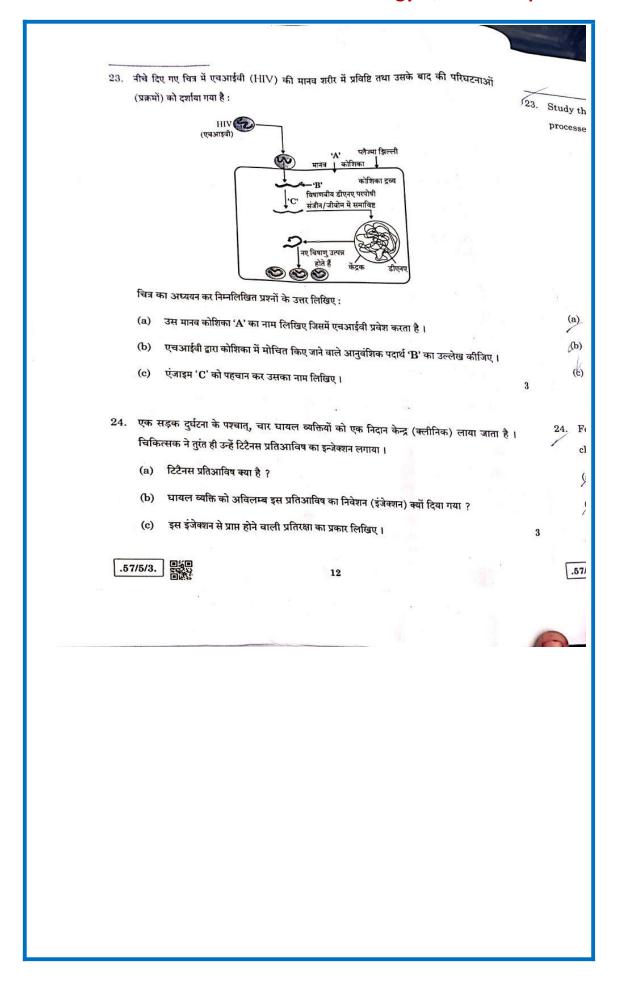
- Question paper. All questions are
 There are 27 questions in the question paper. compulsory.

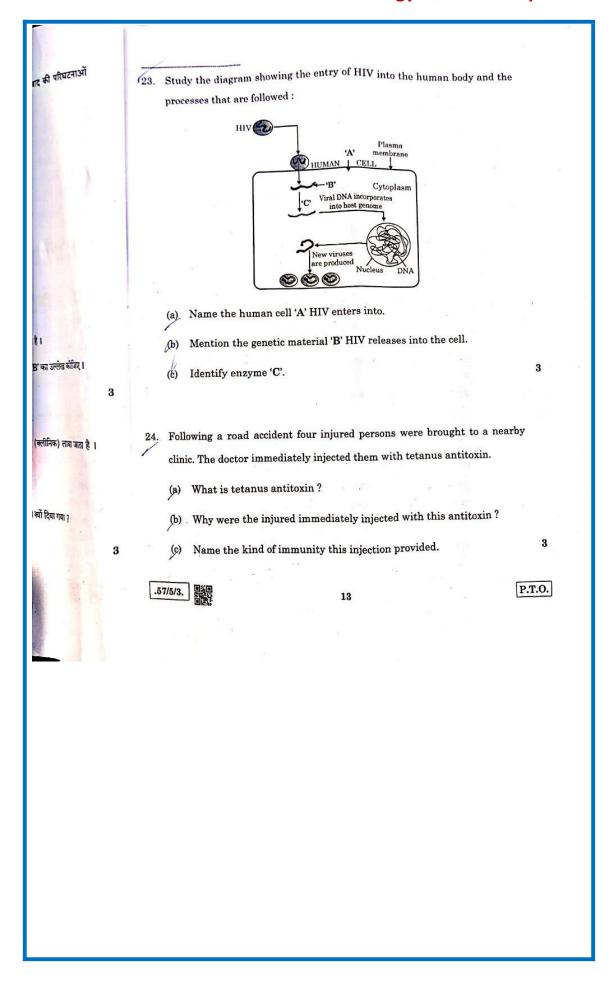
 Section A question number 1 to 5 are multiple choice questions, (i) (ii)
- Section B question number 6 to 12 are short answer questions type-I, (iii)
- Section C question number 13 to 21 are short answer questions type-II,
- Section D question number 22 to 24 are short answer questions type-III, (iv) (v)
- Section E question number 25 to 27 are long answer questions, carrying (vi)
- (viii) Answer should be brief and to the point also the above word limit be
- There is no overall choice in the question paper. However, an internal choice has been provided in two questions of 1 mark, one question of 2 marks, two questions of 3 marks and three questions of 5 marks questions. Only one of the choices in such questions have to be
- The diagram drawn should be neat proportionate and properly
- In addition to this, separate instructions are given with each section (x) and question, wherever necessary. (xi)

(a) प्रारम्भिक जीवन अंतरिक्ष से आया था। (b) अजैव रसायनों ने जैविक अणुओं का निर्माण किया। (c) जीवन पहले से विद्यमान जीवन से ही निकल कर आता है। (d) जीवन की उत्पत्ति स्वतः ही हुई। मवेशियों (दुधारु पशुओं) की एक नस्ल के श्रेष्ठ नर का दूसरी नस्ल की श्रेष्ठ मादा से संगम कराने की विधि कहलाती है (a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरिवसी (c) पेनिस्तिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई	(a) प्रारम्भिक जीवन अंतरिक्ष से आया था। (b) अजैव सायनों ने जैविक अणुओं का निर्माण किया। (c) जीवन पहले से विद्यमान जीवन से ही निकल कर आता है। (d) जीवन की उत्पत्ति स्वतः ही हुई। 2. मवेंशियों (दुधार पशुओं) की एक नस्त के श्रेष्ठ नर का दूसरी नस्त की श्रेष्ठ मादा से संगम कराने की विधि कहलाती है (a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा स्वित चींज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपओनिवैक्टीरियम शारमैगाई कैकेरोमाईसीज सेंरिबसी (c) पंनितिल्यम क्राइसोजनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयां खाने वाले पश्चियों में डी डी टी की मात्रा में चृद्धि का कारण है: (a) सुपोषण (युट्गफिकेशन) (b) जैव-आवर्धन (बायोमैग्निफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेट्ड युट्गफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वार्षिय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			खण्ड – क		
(a) प्रारम्भिक जीवन अंतरिक्ष से आया था। (b) अजैव रसावनों ने जैविक अणुओं का निर्माण किया। (c) जीवन पहले से विद्यमान जीवन से ही निकल कर आता है। (d) जीवन की उत्पत्ति स्वतः ही हुई। - मवेशियों (दुपाह पशुओं) की एक नस्ल के श्रेष्ठ नर का दूसरी नस्ल की श्रेष्ठ मादा से संगम कराने की विधि कहलाती है (a) अंतः प्रजनन (b) बिहः संकरण (c) बिहः प्रजनन (d) संकरण अथवा 'स्विस चीज' में पाए जाने वाले बड़े -बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरिविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 - मछिलयाँ खाने वाले पश्चियों में डी डी टी की मात्रा में चृद्धि का कारण है: (a) सुपोषण (युट्रिफिकेशन) (b) जैव - आवर्धन (बायोमीप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेड युट्रिफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्म रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(a) प्रारम्भिक जीवन अंतरिक्ष से आया था। (b) अजैव स्तायनों ने जैविक अणुओं का निर्माण किया। (c) जीवन पहले से विद्यमान जीवन से ही निकल कर आता है। (d) जीवन की उत्पत्ति स्वतः ही हुई। 2. मवेशियों (दुधाह पशुओं) की एक नस्त के श्रेष्ठ नर का दूसरी नस्त की श्रेष्ठ मादा से संगम कराने की विधि कहलाती है (a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज़ सेरेविसी (c) पनिमिल्यम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलवाँ खाने वाले पश्चियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (युट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमेप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्म रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रेखिक (d) अधोमुखी (उलटा)	1.	लुई प	श्चिर ने प्रमाणित (निटर्शन) किया कि :		
(b) अजैव स्तावनों ने जैविक अणुओं का निर्माण किया । (c) जीवन पहले से विद्यमान जीवन से ही निकल कर आता है । (d) जीवन की उत्पत्ति स्वतः ही हुईं । - मवेशियों (दुमाह पशुओं) की एक नस्त के श्रेष्ठ नर का दूसरी नस्त की श्रेष्ठ मादा से संगम कराने की विधि कहलाती है (a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा क्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकेरोमाईसीज सेरेबिसी (c) पंनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 - मछिलयाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है : (a) सुपोषण (युट्गिफेकेशन) (b) जैव-आवर्धन (बायोमैग्लिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड युट्गिफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक	(b) अजैव स्सायनों ने जैविक अणुओं का निर्माण किया । (c) जीवन पहले से विद्यमान जीवन से ही निकल कर आता है । (d) जीवन की उत्पत्ति स्वतः ही हुई । 2. मवेशियों (दुपाह पशुओं) की एक नस्ल के श्रेष्ठ नर का दूसरी नस्ल की श्रेष्ठ मादा से संगम कराने की विधि कहलाती है (a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शासमैनाई (b) सेकैनोमाईसीज सेरिविसी (c) पंनिस्तित्यम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 3. मछिलवाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है : (a) सुपोषण (युट्राफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड युट्राफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अपोमुखी (उलटा)		(a)	प्रारम्भिक जीवन अंतरिक्ष मे आया था।		
(c) जीवन पहले से विद्यामा जीवन से ही निकल कर आता है। (d) जीवन की उत्पत्ति स्वतः ही हुई। मवेशियों (दुधार पशुओं) की एक नस्त के श्रेष्ठ नर का दूसरी नस्त की श्रेष्ठ मादा से संगम कराने की विधि कहलाती है (a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरिवसी (c) पंतिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 अछितयाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध मुपोषण (एक्सिलेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(c) जीवन पहले से विद्यामान जीवन से ही निकल कर आता है। (d) जीवन की उत्पत्ति स्वतः ही हुई। 2. मवेशियों (दुधारु पशुओं) की एक नस्त के श्रेष्ठ नर का दूसरी नस्त की श्रेष्ठ मादा से संगम कराने की विधि करुलाती है (a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवेक्टीरियम शारमेगाई (b) सैकेरोमाईमीज मेरेविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोवैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पश्चियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		(b)			
(d) जीवन की उत्पत्ति स्वतः ही हुई । मवेशियों (दुधारू पशुओं) की एक नस्त के श्रेष्ठ नर का दूसरी नस्त की श्रेष्ठ मादा से संगम कराने की विधि कहलाती है (a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा स्वित चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) ग्रोपिओनिकेटरिरयम शारमैनाई (b) सैकेरोमाईसीज़ सेरेबिसी (c) पिनिस्तित्यम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 मछिलवाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) मुगेषण (युट्टाफिकेशन) (b) जैव-आवर्धन (बायोमैद्रिफिकेशन) (c) संवर्ध मुगोषण (d) त्वरित सुगोषण (एक्सिलरेटेड युट्टाफिकेशन) आथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(d) जीवन की उत्पत्ति स्वतः ही हुई । 2. मवेशियों (दुपारु पशुओं) की एक नस्त के श्रेष्ठ नर का दूसरी नस्त की श्रेष्ठ मादा से संगम कराने की विधि कहताती है (a) अंतः प्रजनन (b) बिंहः संकरण (c) बिंहः प्रजनन (d) संकरण अथवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरेविसी (c) पंनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पक्षियों में डी डी टी की मात्रा में चृद्धि का कारण है: (a) सुगोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैंप्रिफिकेशन) (c) संवर्ध सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			जीवन पहले में विकास जीवर में ही विकास कर करते हैं।		
मवेशियों (दुधारु पशुओं) की एक नस्ल के श्रेष्ठ नर का दूसरी नस्ल की श्रेष्ठ मादा से संगम कराने की विधि करुलाती है (a) अंत: प्रजनन (b) बिह: संकरण (c) बिह: प्रजनन (d) संकरण अथवा स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शास्मैनाई (b) सैकैरोमाईसीज सेरिवसी (c) पंनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 #इंडिलवाँ खाने वाले पश्चियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्राफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (एक्सिलरेटेड यूट्राफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	2. मवेशियों (दुपारु पशुओं) की एक नस्त के श्रेष्ठ नर का दूसरी नस्त की श्रेष्ठ मादा से संगम कराने की विधि करुताती है (a) अंतः प्रजनन (b) बिंहः संकरण (c) बिंहः प्रजनन (d) संकरण अथवा स्विस चींज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैवटीरियम शारमैनाई (b) सैकेरोमाईसीज सेरेविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोवैक्टर ऐसीटाई 1 3. मछिलायाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमीप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलोटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			जीवन की उत्पत्ति स्वतः ही हुई ।	1	
(a) अंतः प्रजनन (b) बिहः संकरण (c) बिहः प्रजनन (d) संकरण अधवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकेरोमाईसीज़ सेरेविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संबर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अधवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(a) अंतः प्रजनन (b) बहिः संकरण (c) बहिः प्रजनन (d) संकरण अथवा स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकेरोमाईसीज सेरेविसी (c) पेनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	2.	मवेशि कहल	ायों (दुधारु पशुओं) की एक नस्ल के श्रेष्ठ नर का दसरी नस्ल की श्रेष्ठ मादा से संगम कराने की विधि		
(b) बहि: संकरण (c) बहि: प्रजनन (d) संकरण अथवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकेरोमाईसीज सेरिबसी (c) पेनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3. अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(b) बहि: संकरण (c) बहि: प्रजनन (d) संकरण अथवा स्विस चींज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिबैक्टिरियम शारमैनाई (b) सैकैरोमाईसीज सेरेबिसी (c) पिनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछलियाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3. अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			1.00 (a) (a) (b)		
(c) बहि: प्रजनन (d) संकरण अथवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिबैक्टिरियम शारमैनाई (b) सैकैरोमाईसीज सेरेबिसी (c) पेनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमेग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 1 अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(c) बहि: प्रजनन (d) संकरण अथवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिबैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज़ सेरेविसी (c) पिनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछलियाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (युट्राफिकेशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्राफिकेशन) 3. अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		(b)			
अथवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिबैक्टीरियम शारमैनाई (b) लैकैरोमाईसीज सेरेविसी (c) पेनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछलियाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3 3थवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	अथवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिबैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरेविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछलियाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्राफिकेशन) (b) जैव-आवर्धन (बायोमैंप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्राफिकेशन) (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्राफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)					
अधवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिबैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरेबिसी (c) पेनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछितवाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैंप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलेरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	अथवा 'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिवैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरेविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयां खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)					
स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिबैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरेविसी (c) पेनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3थवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	'स्विस चीज' में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है (a) प्रोपिओनिबैक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरेविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्निफिकेशन) (c) संबर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रेखिक (d) अधोमुखी (उलटा)		(-)		1	
(a) प्राप्तआनिबेक्टीरियम शारमैनाई (b) सैकैरोमाईसीज़ सेरेबिसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) मुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3थवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(a) प्रापंजानिबेक्टीरियम शारमैनाई (b) सैकैरोमाईसीज सेरेविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछलियाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3थवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		'स्त्रि	अथवा		
(b) सैकैरोमाईसीज सेरेविसी (c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) मुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैद्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3थवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(b) सैकैरोमाईसीज सेरेविसी (c) पेनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैद्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3थवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		(0)	न पाज में पाए जाने वाले बड़े-बड़े छिद्र होने का कारण है		
(c) पेनिसिलियम क्राइसोजेनम (d) ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(c) पेनिसिलयम क्राइसोजेनम (d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्लिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 3थवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			प्रापआनबक्टीरियम शारमैनाई		
(d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(d) ऐसीटोबैक्टर ऐसीटाई 1 3. मछितयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्निफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) 38थवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		14.902.20	स्करामाइसीज सरेविसी		
3. मछलियाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	3. मछिलयाँ खाने वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यृट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			पनिसिलयम् क्राइसोजेनम		
3. मछिलयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है: (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	3. मछितयाँ खाने वाले पिक्षयों में डी डी टी की मात्रा में वृद्धि का कारण है : (a) सुपोषण (यूट्रॉफिकेशन) (b) जैव-आवर्धन (बायोमैग्निफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		(d)	एसीटाबैक्टर ऐसीटाई	•	
(a) चुनावज (बृट्टाफिकशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्टॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(a) जैव-आवर्धन (बायोमैग्निफिकेशन) (b) जैव-आवर्धन (बायोमैग्निफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	0			1	
(a) चुनावज (बृट्टाफिकशन) (b) जैव-आवर्धन (बायोमैप्रिफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्टॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(a) जैव-आवर्धन (बायोमैग्निफिकेशन) (b) जैव-आवर्धन (बायोमैग्निफिकेशन) (c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	٥.	मछा	तया खान वाले पक्षियों में डी डी टी की मात्रा में वृद्धि का कारण है :		
(c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(c) संवर्ध सुपोषण (d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		(a)	चुनावर्ग (वृद्धाफकशन)		
(d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(d) त्वरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन) अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं: (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			जैव-आवर्धन (बायोमैप्रिफिकेशन)		
अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			संवर्ध सुपोषण		
अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	अथवा जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		(d)	त्चरित सुपोषण (एक्सिलरेटेड यूट्रॉफिकेशन)	2	
जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	जातीय क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निम्न रूप में प्रदर्शित करते हैं : (a) अतिपरवलय (हाइपरबोला) (b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)			2750727	1	
(b) बर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		जार्त	य क्षेत्र संबंध को लघुगणक पैमाने (लॉग स्केल) पर निस्त कर में परिशेष 🛶 🤻		
(b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)	(b) वर्गीय अतिपरवलय (c) रैखिक (d) अधोमुखी (उलटा)		(a)	(6154(al(d))		
(d) अधोमुखी (उलटा)	(d) अधोमुखी (उलटा)		(b)	वर्गीय अतिपरवलय		
			(c)	रैखिक		
			(d)	अधोमुखी (उलटा)	•	
.57/5/3.] 高麗 4	.57/5/3.	_			1	
- Cart 4	4	.5	7/5/3.			
				- Deat 4		
			10			

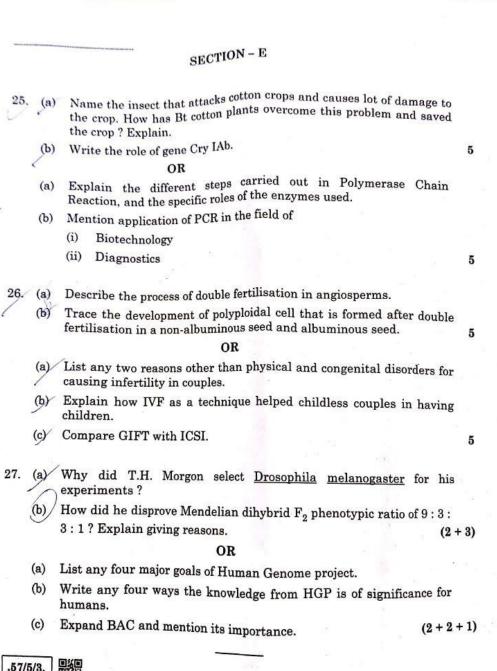
1. Loui	is Pasteur demonstrated early life came from ou	l that		200	
	is Pasteur demonstrom ou				
(8)	- I life come flow	ter space			
(b)	non-living chemicals p	roduced living n	nolecules		
	life sames from pre-exi	sting life .			
	life originated spontan	eously			1
			a cattle to a s	uperior femal	e of
ano	ther breed is called	Transaction of	0 0	+ 7	
(a)	in breeding		20-02		
(b)	out crossing	*			
(c)	out breeding				
(d)	cross breeding-				1
	OR				-
Lar	ge-holes in 'Swiss-Che	ese' are due to			
(a)				*	
(b)				* =	
(c)					
(d)				*	
					1
3. Inc	reased concentration	of DDT in Cal			
(a)	entrophication	n DD1 III IIsn-ea	ating birds is d	ue to	i
10 10	0				
100000				*	
	OR				1
. Sp	ecies-Area relationshi	p is represented	on a log scale	as	
(a)	hyperbola				
		ola	~		6
(d)	inverted	8		ι'	1
.57/5/3.		a ====================================			P.T.O.
		5			1.1.0.
		14		2	
				u 15	
	0 0 8			•	
	(a) (b) (c) (d) Lar (a) (b) (d) 3. Ind (a) (b) (c) (d) Sp (a) (b) (c) (d)	(d) life originated spontarial another breed is called (a) in breeding (b) out crossing (c) out breeding (d) cross breeding OR Large-holes in 'Swiss-Chee (a) Propionibacterium si (b) Saccharomyces cerev (c) Penicillium chrysoge (d) Acetobacter aceti 3. Increased concentration (a) eutrophication (b) bio-magnification (c) cultural eutrophicat (d) accelerated eutroph OR Species-Area relationshi (a) hyperbola	2. Mating of a superior male of a breed of another breed is called (a) in breeding (b) out crossing (c) out breeding (d) cross breeding OR Large-holes in 'Swiss-Cheese' are due to (a) Propionibacterium sharmanii (b) Saccharomyces cerevisae (c) Penicillium chrysogenum (d) Acetobacter aceti 3. Increased concentration of DDT in fisher (a) eutrophication (b) bio-magnification (c) cultural eutrophication (d) accelerated eutrophication OR Species-Area relationship is represented (a) hyperbola (b) rectangular hyperbola (c) linear (d) inverted	(d) life originated spontaneously 2. Mating of a superior male of a breed of a cattle to a sanother breed is called (a) in breeding (b) out crossing (c) out breeding (d) cross breeding OR Large-holes in 'Swiss-Cheese' are due to (a) Propionibacterium sharmanii (b) Saccharomyces cerevisae (c) Penicillium chrysogenum (d) Acetobacter aceti 3. Increased concentration of DDT in fish-eating birds is d (a) eutrophication (b) bio-magnification (c) cultural eutrophication (d) accelerated eutrophication OR Species-Area relationship is represented on a log scale (a) hyperbola (b) rectangular hyperbola (c) linear (d) inverted	(d) life originated spontaneously 2. Mating of a superior male of a breed of a cattle to a superior female another breed is called (a) in breeding (b) out crossing (c) out breeding (d) cross breeding OR Large-holes in 'Swiss-Cheese' are due to (a) Propionibacterium sharmanii (b) Saccharomyces cerevisae (c) Penicillium chrysogenum (d) Acetobacter aceti 3. Increased concentration of DDT in fish-eating birds is due to (a) eutrophication (b) bio-magnification (c) cultural eutrophication (d) accelerated eutrophication OR Species-Area relationship is represented on a log scale as (a) hyperbola (b) rectangular hyperbola (c) linear (d) inverted 5775/3.

4.	होने व	क ानम्नालाखत भागा का याः की संभावना है ?	यान्छ। (भृदा) मे	दबाया/डाला जाए	तो किस भाग से नई संतति उ	শেস
	(a)	पर्व (पोरी) का भाग				
	(b)	पर्व संधियुक्त स्तंभ की कलम	1			
	(c)	प्राथमिक मूल (जड़) का भा	ग	, and		
	(d)	एक पुष्प				1
5.	एक (आर	जीवाणु में अनुलेखन के समय बंधित) है, तो यह	जब आर एन ए प	ॉलिमरेज एक अनुले	ोखन इकाई पर उन्नायक से जु	ड़ता
	(a)	प्रक्रम का समापन कर देता है	1			
	(b)	इंट्रॉन के विलगन (हटाने) में	सहायक है।	E 5	URIL	
	(c)	प्रक्रम प्रारंभ करता है।				
	(d)	एक्जॉन को निष्क्रिय कर देत	ा है ।			1
			2.8			-
			खण्ड – ख	1		
6.	आभल	क्षिण लिखिए ।			ए । प्रत्येक के एक-एक विशि	2
7.	(a)	मछलियों की वैश्विक माँग लिखिए।	की आपूर्ति के ी	लिए उपयोग की उ	नाने वाली दो तकनीकों के	नाम
	(b)	अलवण जल की कोई दो मह	इ लियों के नाम लि	खिए।		2
		and the second second	अथवा			
	सूक्ष्म कीजि	जीव विज्ञान के क्षेत्र में एलैक	जैंडर फ्लैमिंग, अ	रनैस्ट चेन तथा होत	वर्ड फ्लौरे के योगदान का व	र्गन
	ANIO					2
8.	सभी	क्लोनिंग संवाहकों में 'वरण यो	ग्य चिद्रक' होते हैं	। पनर्योगज हीएक	र प्रौद्योगिकी में इनकी भूमिका	त्रा
	वर्णन	कीजिए। 🔠	A THE CITY OF	1 3 14114 3144	र प्राचाागका म इनका मूमिका	2
.5	7/5/3.					
V38.0-		, 回程(;	6			2 19 2
					(\$1) H	
		. n			.09	


5.	to produce new off (a) Part of an in (b) A stem cuttin (c) Part of a prin (d) A flower In a bacterium transcription unit (a) terminates the	ternode ng with a node mary root when RNA-polymer during transcription,	ase binds to the		1
5.	to produce new off (a) Part of an in (b) A stem cuttin (c) Part of a prin (d) A flower In a bacterium transcription unit (a) terminates the	fspring? ternode ng with a node mary root when RNA-polymer during transcription,	ase binds to the		1
5.	(a) Part of an in (b) A stem cuttin (c) Part of a prin (d) A flower In a bacterium transcription unit (a) terminates the	ternode ng with a node mary root when RNA-polymer during transcription,		promoter on a	1
5.	(b) A stem cutting (c) Part of a pring (d) A flower In a bacterium transcription unit (a) terminates the	ng with a node mary root when RNA-polymer during transcription,		promoter on a	1
5.	(c) Part of a print (d) A flower In a bacterium transcription unit (a) terminates the	mary root when RNA-polymer during transcription,		promoter on a	1
5.	(d) A flower In a bacterium transcription unit (a) terminates the	when RNA-polymer during transcription,		promoter on a	1
5.	In a bacterium transcription unit (a) terminates th	during transcription,		promoter on a	1
5.	transcription unit (a) terminates th	during transcription,		promoter on a	
	(a) terminates th				
		ne process			
	(b) helps remove				
	(c) initiates the p	process .			
	(d) inactivates th	ie exons			1
*					-
7		SECTION -	- B		
1					
6.	Name one air-born	e and a water borne	disease in humana	List one 'c	
1	symptom of each or	ne of them.		List one specific	
		0.000			2
_	(a) N	W	W W		
<i>J</i> .	iish in the wo			asing demand of	
	(b) Name any two	o fresh water fishes.			2
	OR				_
	Describe the cont Howard Florey in t	ributions of Alexa he field of microbiol	nder Fleming, Err ogy.	nest Chain and	2
Q	A11 -1				
8. 1	recombinant DNA-t	s do have a 'select technology.	table marker'. Des	cribe its role in	2
.57/5	/3.			ln.	E ()
		. 7		P	г.о.
72					
			25		


9.	प्रत्येक	के एक-एक समुन्ति	चेत उदाहरण की	सहायता मे	ममद्यादण वि	पादपभक्षियों	(शाकाहारिकें	\ 1	
	प्रतिरक्ष	त एक-एक सनु	ांत्रिक (आकारिकी	ाय) तथा रासा	यनिक रक्षा वि	विधयाँ कैसे विक	सित की हैं ?	2	
10.	ह्यूमस	का निर्माण कैसे होत	त है ? ह्यूमस के वि	केन्हीं तीन आ	भेलक्षणों का	उल्लेख कीजिए	ı	2	
11.	मेंडली	य विकार क्या होते	हैं ? 'थैलासीमिय	ा तथा वर्णाधत	ता दोनों को ग	र्गेडलीय विकार ^ह	में संवर्गित कि	या गया	
	61 0	मथन का औचित्य वि	सद्ध काजिए ।					2	
12.	एक वि	केसान के लिए असं	ांगजन बीजों के दो	लाभ लिखिए	ξ1			2	
				खण्ड – ग					
13.	(0)		201	Service Control		222200			
13.	(a) (b)	उस पैलीन्डोमिक संवाहक डीएनए							
		जिन पर चिपचि	पे छोर बनाने के ि	लेए ईको आर	-I ने क्रिया	की है।	का प्रदाशत ।	कथा गया हो	
	(c)	पुनर्योगज डीएन	ए के निर्माण में स	हायक एंजाइम	न का नाम वि	तखिए ।	6		3
14.	'मल	अन्वेषक प्रजाति	' 'चाम समटाय	' तथा 'कपक	ं भें अंस म	गण कीचिया ।			
	6			थवा	, 4 300 C	पट फा।जए ।			3
	प्राणि	उद्यान (पार्क),	वनस्पतिक उद्याः	न तथा वन्य <i>-</i> ः	जीव सफारी	के अतिरिक्त ऐ	से तीन उपाय	ों (तरीकों) की	1
	व्याख	त्र्या कीजिए जिनवे हा है ।	के द्वारा संकटोत्प	न्न पादपों तथ	ा जंतुओं क	ा 'बाह्य-स्थाने'	(एक्स सीट्ट) संरक्षण किर	π
	on C	6161							
15.	सोनी	पत, हरियाणा वे	क किसान रमेश	चन्द्र डागर	दारा सफल	नापर्वक अपना	है गर्द 'ग्रस्तीन	हत जैस खेरी	- -
	व्यार	ड्या कीजिए ।			A	244, 214.11	4 .15 . 6411.	कृत जय खता	વતા
								* *	
16.	(a)	एक अच्छे ग हार्मीन मोचित	र्भ-निरोधक के त करने वाले अ	रूप में Cu ⁴ गई यू डी से र	⁺⁺ मोचकः यह किस प्र	आई यू डी की ' कार भिन्न हैं ?	क्रियाविधि व	ह्या ख्या की	जिए
	(b)	स्त्रियों द्वारा ' लिखिए ।)	सहेली' नामक	गर्भ-निरोधव	क को अधि	क वरीयता क	में दी जाती है	है ? (कोई दो	कारण
				** ~ .					
	7/5/3.				8				
.5'									
.5'									
.5'	50								
.5'	20	e W							

 Mention how have plants developed mechanical and chemical defence against herbivores to protect themselves with the help of one example of each. 	2
10. How is humus formed? Mention any three characteristics of humus.	2
11. State what are Mendelian disorders. Both thalassemia and colour blindness categorised as Mendelian disorders. Justify.	2
12. State two advantages of an apomictic seed to a farmer.	2
SECTION - C	
13. (a) Write the palindromic nucleotide sequence EcoRI recognises.	
(b) Draw the vector DNA and a foreign DNA showing the sites where EcoRI has acted to form the sticky ends.	
(c) Name the enzyme that helps in forming recombinant DNA.	3
14. Differentiate between "Pioneer-species"; "Climax-community" and "Seres". OR	3
Explain any three ways other than zoological parks, botanical gardens and wildlife safaries, by which threatened species of plants and animals	
are being conserved 'ex situ'.	3
Explain 'Integrated organic' farming as successfully practiced by Ramesh C. Dagar, a farmer in Sonepat (Haryana).	3
16 () 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
16. (a) Explain the mode of action of Cu ⁺⁺ releasing IUDs as a good contraceptive. How is hormone releasing IUD different from it?	
(b) Why is 'Saheli' a preferred contraceptive by women (any two reasons)?	3
.57/5/3. P.T.	0.
	.X


17. एस एच पी (SNPs) क्या हैं ? मानव कोशिका में वे कहीं अवध्यत होते हैं ? एस एन पी (SNPs) की खोज से ऐसे दो लाभ लिखिए जो मानव के लिए उपयोगी सिद्ध हो सकते हैं । 18. (a) पृथ्वी पा 2-मिलियन वर्ष पूर्व से 40,000 वर्ष पूर्व के काल खण्ड में निम्निलिखित को उनके उद्भव काल के आधार पर सही क्रम में पुनः व्यवस्थित कीजिए । नियंडरथल, ऑस्ट्रेलीप्येकस, होमों होकिलस । (b) उपरोक्त में से — (i) किसके मिलिष्क का आकार सर्वाधिक था ? (ii) कीन फलपश्ची (खाता) था ? 3 19. एक समुचित उदाहरण की सहायता से एक प्रारूपिक एक संकर क्राँस में मेंडल के विसंयोजन निवम (लॉ ऑफ सेग्रीगेशन) की व्याख्या कीजिए । 20. (a) हमारी कुछ फमली प्रजातियों के नाम लिखिए । (b) सफल मपुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए । 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं । अथवा स्वियों में अंतर्रोपण के परचात् जरायु बनने की क्रिया की व्याख्या कीजिए । खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार-चढ़ाव परिलक्षित होते हैं ।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए ।	श्री से ऐसे दो लाभ लिखिए जो मानव के लिए उपयोगी सिद्ध हो सकते हैं । 18. (a) पृथ्वी पर 2-मिलियन वर्ष पूर्व से 40,000 वर्ष पूर्व के काल खण्ड में निम्नलिखित को उनके उद्भव काल के आधार पर सही क्रम में पुनः व्यवस्थित कीजिए । नियंडरथल, ऑस्ट्रेलोपिथेकस, होमों हेस्ट्रस, होमों हैंबिलिस । (b) उपरोक्त में से — (i) किसके मस्तिष्क का आकार सर्वाधिक था ? (ii) कौन फलभक्षी (खाता) था ? 3 19. एक समुचित उदाहरण की सहायता से एक प्राह्मिक एक संकर क्रॉस में मेंडल के विसंयोजन नियम (लॉ ऑफ सेग्रोगेशन) की व्याख्या कीजिए । 20. (a) हमारी कुछ स्प्रीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए । ऐसी कुछ फझली प्रजातियों के नाम लिखिए । (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्वपूर्ण चरणों की सूची बनाइए । 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं । अथवा कियों में अंतरोंपण के परचात् जरायु बनने की क्रिया की व्याख्या कीजिए । खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार—चढ़ाव परिलक्षित होते हैं ।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब होगी ? (b) मेट्रो शहर की जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए ।		
काल के आधार पर सहीं क्रम में पुनः व्यवस्थित कीजिए । नियंडरथल, ऑस्ट्रेलीपिथेकस, होमो हेक्ट्स, होमो हैक्टिस । (b) उपरोक्त में से — (i) किसके मस्तिष्क का आकार सर्वाधिक था ? (ii) कीन फलभक्षी (खाता) था ? 19. एक समुचित उदाहरण की सहायता से एक प्रारूपिक एक संकर क्रॉस में मेंडल के विसंयोजन निवम (लॉ ऑफ संग्रीगेशन) की व्याख्या कीजिए । 20. (a) हमारी कुछ स्पीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए । ऐसी कुछ फसली प्रजातियों के नाम लिखिए । (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए । 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्य में संभव हो सकते हैं । अथवा क्षियों में अंतरोंपण के परचात् जरायु बनने की क्रिया की व्याख्या कीजिए । 3 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्टि (जनसंख्या) घनत्व में उतार-चढ़ाव परिलक्षित होते हैं ।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय '!' पर समिष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्टि घनत्व लिखिए ।	काल के आधार पर सही क्रम में पुनः व्यवस्थित कीजिए । निर्यंडरधल, ऑस्ट्रेलीपिथेकस, होमो होक्टिस, होमो हेक्टिस, होमो होक्टिस, होमो हेक्टिस, होमो होम होमे हेक्टिस, होमो हेक्टिस, होमो हेक्टिस, होमो हेक्टिस, होमो होम होमे हेक्टिस, होमो हेक्टिस, होमो होम होमे हेक्टिस, होमो होम होम होमे हेक्टिस, होमो होम होमे हेक्टिस, होमो होम होम होमे हेक्टिस, होमो होम होम होमो होम होम होम होम होम ह	17	खोज से ऐसे दो लाभ लिखिए जो मानव के लिए उपयोगी सिद्ध हो सकते हैं ।
(ii) किसके मितष्क का आकार सर्वाधिक था ? (iii) कौन फलमक्षी (खाता) था ? 19. एक समुचित उदाहरण की सहायता से एक प्रारूपिक एक संकर क्रॉस में मेंडल के विसंयोजन नियम (लॉ ऑफ सेग्रीगेशन) की व्याख्या कीजिए । 20. (a) हमारी कुछ स्मीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए । ऐसी कुछ फसली प्रजातियों के नाम लिखिए । (b) सफल मधुमक्खी-पालन के लिए घ्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए । 3 उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं । अथवा क्यां में अंतरोंपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए । 3 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार-चढ़ाव परिलक्षित होते हैं ।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब दोगी ? (b) मेट्रो शहर की जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समिष्ट घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए ।	(ii) किसके मित्तष्क का आकार सर्वाधिक था ? (iii) कौन फलमक्षी (खाता) था ? 19. एक समुचित उदाहरण की सहायता से एक प्रारूपिक एक संकर क्रॉस में मेंडल के विसंयोजन नियम (लॉ ऑफ सेग्रीगेशन) की व्याख्या कीजिए । 20. (a) हमारी कुछ स्मीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए । ऐसी कुछ फ़सली प्रजातियों के नाम लिखिए । (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए । 3 उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्य में संभव हो सकते हैं । अथवा क्रियों में अंतर्रोपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए । खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार-चढ़ाव परिलक्षित होते हैं ।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर की जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समिष्ट घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए ।	18	 ५८ (a) पृथ्वी पर 2-िमिलियन वर्ष पूर्व से 40,000 वर्ष पूर्व के काल खण्ड में निम्निलिखित को उनके उद्भव काल के आधार पर सही क्रम में पुनः व्यवस्थित कीजिए । नियंडरथल, ऑस्ट्रेलोपिथेकस, होमो इरेक्टस, होमो हैबिलिस ।
(ii) कौन फलभशी (खाता) था ? 19. एक समुचित उदाहरण की सहायता से एक प्रारूपिक एक संकर क्रॉस में मेंडल के विसंयोजन नियम (लॉ ऑफ सेग्रीगेशन) की व्याख्या कीजिए । 20. (a) हमारी कुछ स्पीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए । ऐसी कुछ फझली प्रजातियों के नाम लिखिए । (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए । 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं । 3 अथवा स्थियों में अंतरोंपण के परचात् जरायु बनने की क्रिया की व्याख्या कीजिए । 3 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार चढ़ाव परिलक्षित होते हैं ।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समिट्ट घनत्व लिखिए ।	(ii) कौन फलभक्षी (खाता) था ? 19. एक समुचित उदाहरण की सहायता से एक प्रारूपिक एक संकर क्रॉस में मेंडल के विसंयोजन नियम (लॉ ऑफ सेग्रीगेशन) की व्याख्या कीजिए। 20. (a) हमारी कुछ स्पीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए। ऐसी कुछ फसली प्रजातियों के नाम लिखिए। (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए। 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्य में संभव हो सकते हैं। 3 32वा िस्यों में अंतरोंपण के परचात् जरायु बनने की क्रिया की व्याख्या कीजिए। खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार—खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।		
19. एक समुचित उदाहरण की सहायता से एक प्रारूपिक एक संकर क्रॉस में मेंडल के विसंयोजन नियम (लॉ ऑफ सेग्रीगेशन) की व्याख्या कीजिए। 20. (a) हमारी कुछ स्पीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए। ऐसी कुछ फ़सली प्रजातियों के नाम लिखिए। (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए। 3 अथवा ित्यों में अंतरोंपण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं। 3 अथवा ित्यों में अंतरोंपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए। 3 खण्ड ─ घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार─चढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समिष्ट घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए।	19. एक समुचित उदाहरण की सहायता से एक प्रारूपिक एक संकर क्रॉस में मेंडल के विसंयोजन नियम (लॉ ऑफ सेंग्रीगेशन) की व्याख्या कीजिए। 20. (a) हमारी कुछ स्पीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए। ऐसी कुछ फमली प्रजातियों के नाम लिखिए। (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए। 3 अथवा [स्वयों में अंतरोंपण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं। अथवा [स्वयों में अंतरोंपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए। खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार—चढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए।		(i) किसके मस्तिष्क का आकार सर्वाधिक था ?
(लॉ ऑफ संग्रीगंशन) की व्याख्या कीजिए। 20. (a) हमारी कुछ स्मीसीज (जाती) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए। ऐसी कुछ फ़मली प्रजातियों के नाम लिखिए। (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए। 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं। 3 3 3 32 42 42 42 42 42 42 4	(लॉ ऑफ संग्रीगंशन) की व्याख्या कीजिए। 20. (a) हमारी कुछ स्पीसीज (जाति) की फसलों के खेतों में मधुमक्खी पालन क्यों किया जाता है ? व्याख्या कीजिए। ऐसी कुछ फ़सली प्रजातियों के नाम लिखिए। (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए। 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं। 3 3 3 3 3 3 4 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार-चढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर की जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समिष्ट घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए।		(ii) कौन फलभक्षी (खाता) था ?
क्राजए। एसा कुछ फ़सली प्रजातियों के नाम लिखिए। (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए। 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं। 3 अथवा स्थियों में अंतर्रोपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए। उण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार—चढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समिष्ट घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए।	क्रीजए। एसी कुछ फ़सली प्रजातियों के नाम लिखिए। (b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए। 3 21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं। 3 अथवा स्थियों में अंतर्रोपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए। खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार—खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी? (c) यदि समय '!' पर समिष्ट घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए। [57/5/3]	1	(लॉ ऑफ संग्रीगेशन) की व्याख्या कीजिए ।
 31. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं । अथवा िक्षयों में अंतर्रोपण के परचात् जरायु बनने की क्रिया की व्याख्या कीजिए । 3 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार चढ़ाव परिलक्षित होते हैं ।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समिष्ट घनत्व 'N' है, तो समय 't + 1' पर इसका समिष्ट घनत्व लिखिए । 	21. उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं। अथवा स्त्रियों में अंतर्रोपण के परचात् जरायु बनने की क्रिया की व्याख्या कीजिए। खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।	2	कीजिए। ऐसी कुछ फ़सली प्रजातियों के नाम लिखिए।
अथवा स्त्रियों में अंतर्रोपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए। 3 3 3 3 4 4 5 6 6 6 7 6 7 8 8 8 9 9 9 9 9 9 9 9 9 9	अथवा स्त्रियों में अंतरोंपण के परचात् जरायु बनने की क्रिया की व्याख्या कीजिए। खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।		(b) सफल मधुमक्खी-पालन के लिए ध्यान में रखने वाले तीन महत्त्वपूर्ण चरणों की सूची बनाइए। 3
खण्ड - घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।	स्त्रियों में अंतरोंपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए। खण्ड — घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।	2	 उन तीन प्रकार के परागण की व्याख्या कीजिए जो किसी उन्मील परागणी पुष्प में संभव हो सकते हैं।
खण्ड - घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।	खण्ड - घ 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।		
22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।	22. "एक मेट्रो शहर (बड़े शहर) में एक समयावधि में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।		स्त्रियों में अंतर्रोपण के पश्चात् जरायु बनने की क्रिया की व्याख्या कीजिए।
 22. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए। 	22. "एक मेट्रो शहर (बड़े शहर) में एक समयावधि में समष्टि (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।" (a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।		
(a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।	(a) इस मेट्रो शहर की जनसंख्या में वृद्धि की प्रवृत्ति कब परिलक्षित होगी ? (b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।		
(b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए। [57/5/3.] 聖義恩	(b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ? (c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।	2	2. "एक मेट्रो शहर (बड़े शहर) में एक समयाविध में समिष्ट (जनसंख्या) घनत्व में उतार-खढ़ाव परिलक्षित होते हैं।"
(c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।	(c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।		
.57/5/3.	.57/5/3.		(b) मेट्रो शहर में जनसंख्या में कमी की प्रवृत्ति कब होगी ?
.57/5/3. DEST. 10	.57/5/3.		(c) यदि समय 't' पर समष्टि घनत्व 'N' है, तो समय 't + 1' पर इसका समष्टि घनत्व लिखिए।
			.57/5/3.

	way	at are 'SNPs'? Where are they located in a human cell? State any two is the discovery of SNPs can be of importance to humans.	3
18.	(a)	Rearrange the following in the correct order of their appearance on Earth between two million years and 40,000 years back.	
		Neanderthals, Australopithecus, Homo erectus and Homo habilis.	
	(b)	Which one of the above	
		(i) had the largest brain size	
		(ii) ate fruits	3
19.		olain Mendel's "Law of segragation" in a typical monohybrid cross with help of a suitable example.	3
20.	(a)	Explain why bee-hives are setup on the farms for some of our crop- species. Name any two such crop species.	
	(b)	List any three important steps to be kept in mind for successful bee keeping.	3
21.	100	lain three different modes of pollination that can occur in a smogamous flower. OR	3
	Exp	lain the formation of placenta after implantation in a human female.	3
		SECTION - D	
22.		e population of a metro city experiences fluctuations in its population sity over a period of time."	
*	(a)	When does the population in a metro city tend to increase?	
	(b)	When does the population in metro city tend to decline?	
6	(c)	If 'N' is the population density at the time 't', write the population density at the time 't + 1'.	3
.57	/5/3.	11 P.7	.O.
	2016		

				_		
			खण्ड – ड	_{विवर} जो इसे बहुत अधिक	हानि	and the same of th
	25. (a)) कपास की फसलों पर हमला कर पहुँचाता है। बीटी कपास पौधों से	ने वाले उस कीट का नाम ICI इस समस्या का निदान कैसे संभ	व हो सका और फसल की	मुरक्षा	-V Nome th
		कर्म ३ ह्याख्या के॥जप्			5 25.	the crop
	(6	्राप्तिकी भूमिका लिखि	Ų l		•	(b) Write t
	7.0	a) पॉलिमरेज शृंखला अभिक्रिया के	अथवा	जिए तथा इसमें उपयोग	में आने	9,
	(8	 पॉलिमरेज मृंखला आभाक्रया क वाले एंजाइमों की विशिष्ट भूमिका 	विभन्न चरणा का व्याउन न की व्याख्या कीजिए।	3		(a) Explai React
		🛶 केनें में पीसीआर के उपयोग	का उल्लेख कीजिए:		48	(b) Ment
	(t	के जैलोगिकी				(i)
		(i) जव-प्राधानिका (ii) नैदानिकी (निदानशास्त्र)			5	(ii)
81					-	ne (a) Do
	26. (a	 आवृतबीजियों (ऐंजिओस्पर्म) में 	द्विनिषेचन (दोहरा निषेचन) व	त वणन कारण्य । स्टिक्स्यास्ट्राह्म बनने वा	ली बहग्णित	26. (a) De (b) Tr
	(b)	्र एक गैरएलबमिनस बीज एलबुमि	नस बीज में दोहरे निषचन क	disoluteday	5	fe
	674.5	कोशिका के विकास का अनुपथ	बताइए ।			0.2
			अथवा	ता के टो कारणों की स्र	वी बनाइए।	(a)
	(a)) दंपतियों में शारीरिक तथा जन्मज	ात विकार के आतारक्त बच्च	िया आईतीएफ तकनी	क किस प्रकार	(b)
3	(b)) दंपितयों में शारीरिक तथा जन्मज) बंध्य दंपितयों (संतानिवहीन दंप	तियों) में सतान प्राप्त क	lad 2114-1/1.		91
11		महायक सिद्ध हुई है ? व्याख्या	काजिए।		5	(c)
	(c)	जीआईएफटी की तुलना आईसी	एसआई से कीजिए।		. 1. 19	190
					35 BST6	27. (a)
1.1	27. (a)	अपने प्रयोगों के लिए टी.एच. म	ोर्गन ने <u>ड्रोसोफिला</u> मेलानी	ास्टर का क्या चुना !	- () 4)	1
1	(h)	अपन प्रयोगी के लिए टा.र्प. उन्होंने मेंडलीय द्विसंकर F_2 फी	ोनोटाइप के 9 : 3 : 3 :	1 अनुपात को अस्वीव	कृत (खंडन) कस	0
1	(0)	किया ? कारण सहित व्याख्या	कीजिए।	£	(2 + 3))
			अथवा			
			उटेफों की मनी ब	उताहण ।		
	(a)	मानव जीनोम परियोजना के चा	(प्रमुख उद्दरमा मा सूमा		कोष गटन की हैं।	
	(b)	एच जी पी से प्राप्त ऐसी चार सू	वनाओं (ज्ञान) को लिखि	ए जा मानव के लिए।	वश्य महत्य या हा	• \
	(c)	बी ए सी का पूरा नाम (विस्तृत	स्वरूप) लिखिए तथा इस	कि महत्त्व का उल्लेख	भी कीजिए। $(2+2)$	+1)
	(0)	41 / 111 11 / 11 11 / 11 / 11				F3
		同丝回	• • •			<u> </u>
	.57/5/3.		14	49		ı
				e ,	**	
		20				
(3)						. 9
					2	

.57/5/3.